Case Study: Migrating a 60 TB BW System to SAP BW 7.4 on SAP HANA — McKesson’s Lessons Learned

Cynthia Strickland
McKesson
In This Session

• Understand McKesson’s motivation for migrating to SAP BW on HANA

• Hear how the company used the direct database migration (DMO) tool to migrate from Oracle to SAP HANA, upgrade from SAP BW 7.3 to SAP BW 7.4, and convert Unicode

• Understand the preparations and pre-checks on the BW system, such as cleanup of queries, to ensure a smooth upgrade and migration

• Review lessons learned from McKesson’s migration
About McKesson

- One of the largest pharmaceutical distributors in North America
- More than 37,000 employees dedicated to healthcare
- Oldest U.S. healthcare company
- Established in 1833
- Deep clinical, IT, and process expertise
- Headquarters located in San Francisco, California
What We’ll Cover

- Challenges and requirements
- SAP at McKesson
- Considerations for moving to SAP BW on HANA
- McKesson solution overview
- Wrap-up
Updating the SAP Landscape

• Need to modernize SAP landscape to achieve operational excellence and enable planned volume growth with SAP HANA

• Business Problem
 - Current system landscape creates unnecessary complexities on an aging, batch-process-oriented platform and is the primary reason that many of the current pain points exist
 - Landscape requires technology upgrades to sustain the current and planned volume of transactions flowing through the enterprise
 - We are asking different business questions today, that are much more complex and time sensitive in nature
 ➤ This requires systems that have the ability to answer complex questions in real time
Updating the SAP Landscape (cont.)

- Use Case/Solution: Update US Pharma SAP and BI Landscape with SAP HANA

- BI Rationalization – Transition reporting in BW to HANA
 - Enable existing duplicate BI assets to be retired
 - Enable data to be handled as a single source

- Infrastructure Modernization – Physical ➔ Logical (IAAS)
 - Utilize internal cloud service to provide ability to provision SAP Landscape in days not weeks
 - Reduce cost of SAP non-production assets

- SAP Renovation – ECC on HANA
 - Ability to simplify SAP configuration tuned to meeting Order flow
 - Ability to provide real-time reporting and analytics from ECC
Updating the SAP Landscape (cont.)

- **Risks Mitigated**
 - BI Rationalization
 - Asset reduction
 - Infrastructure Modernization
 - Remove cost and complexity and improve service
 - SAP Renovation – ECC on HANA
 - Provide scalability, reliability, and speed

Note

Increase the useful life and operational excellence of core SAP and Business Intelligence Assets
What We’ll Cover

• Challenges and requirements
• **SAP at McKesson**
• Considerations for moving to SAP BW on HANA
• McKesson solution overview
• Wrap-up
US Pharma and SAP Background

• Where have we been and where are we going?

1999

McKesson expands SAP use beyond Financials (OTP Project):
- Adopted SAP to be source of core financials
- Reduced Order-to-Cash cycles
- Reduced Financial Close duration
- Mitigated risk of Y2K

ERP

FY06

McKesson extends relationship with SAP (Enterprise Agreement):
- Supported US Pharma application rationalization
- Moved Contracts and Chargebacks to SAP
- Reduced cycle time for Order-to-Cash, Procure-to-Pay, and Financial Processes

Business Process Optimization and Basic Analytics

FY13

Upgrade SAP environment with HANA:
- Enable scalable platform to sustain growth
- Answer more complex and detailed business questions across a growing data set
- Maintain competitive advantage

Scalability and Real-Time Analytics
SAP HANA Initiative at McKesson Is Named Aurora Program, an IT-Driven Initiative

- Overall requirements of the program are based on three pillars:
 - Infrastructure Modernization
 - Reduce system landscape complexity and data redundancy
 - BI Rationalization
 - Deploy foundational in-memory platform, migration of existing SAP BW application, upgrade SAP BusinessObjects applications
 - ECC on HANA
 - Improve ability to handle the growth in transaction volume in SAP ECC (target is 1m orders a day)

Focus of HANA Program is to ensure we deliver successfully while minimizing business disruption, including minimum downtime of systems and applications
Aurora Program Pillar: BI Rationalization

- McKesson’s HANA Program Pillar BI Rationalization has the following major objectives:
 - Simplify the overall BI System Landscape
 - Establish SAP HANA platform as foundation for McKesson’s BI applications
 - Reduce Data Redundancy and promote real-time reporting and analytics
 - Enable a reduction of operating costs via Asset retirement and decrease of storage needs to support the current environment
 - Introduce improved ETL mechanisms with SAP Data Services

Increasing business need for near real-time information (business insight not hindsight)
McKesson BI Landscape

- ECC is the central transactional system and considered the system of record
- BW is a 7-year-old system that was primarily developed as a financial reporting application
- IW application is an Oracle-based data warehouse built throughout 20 years. It supports primarily sales and logistics.
- IBM Data Stage application is currently the central ETL component for data movements between McKesson’s landscape. Data Stage is out of support.
- BW never archived since go-live
- 1 in 10 report users rely on BW data
- 9 in 10 report users rely on IW data
Work Stream — BI Rationalization: Objectives

As Is
- BEx 3.0 Queries
 - BOBJ Reports
 - BW 7.0
 - IW
 - Data Stage
 - ETL Improvements
- ECC
 - Other Sources

To Be
- BOBJ Upgrade
 - BW on HANA
 - IW : HANA Modelling
 - Technical Team
 - HANA Views
 - SAP Extractors
 - Data Services
 - Other Sources

Real-time Analytics; standardized on SAP BusinessObjects; integrated, not batch-driven
What We’ll Cover

- Challenges and requirements
- SAP at McKesson
- Considerations for moving to SAP BW on HANA
- McKesson solution overview
- Wrap-up
Key Consideration for Upgrading to BW on HANA – Test, Test and Then Test Again

- **Use SAP’s Database Migration Option (DMO) tool to:**
 - Migrate (HANA), Upgrade (BW 7.3 to 7.4), and Convert (Unicode) in one step
 - **Test Strategy**
 - Technical Tests – Testing DMO tool
 - Functional Test – Creating test scripts for each cycle including (UAT) and validating the system build
 - User Acceptance Test (UAT) – User testing BW on HANA
 - **Change Management**
 - Landscape cutover approach
 - **Vendor Management**
 - New technologies required more collaborative effort and integration with multiple parties
Key Consideration — Testing Strategy

• Technical tests for the migration were conducted using the SAP Database Migration Option (DMO) tool:
 ♦ 7 cycles were planned
 ▶ Cycles 2-5 build the HANA path to production landscape (Dev, QA, Cons, and Performance)
 ♦ A detailed runbook was established and refined with each cycle execution
 ▶ Runbook was used for knowledge transfer and transition to Basis team and support
 ♦ Comprehensive technical testing
 ▶ Unit test, performance test, syndication, inbound/outbound, string (end-to-end) testing for all BW Production and non-Production environments
• Testing/Validation Activities for all Cycles
 ▶ Functional – Validate Queries, workbooks to ensure the configuration and flow of data supports all BW related functions and integrated processes
 ▶ Technical: Record count, Check Sums, $/Qty Totals for sample of critical reports
Key Consideration — Testing Strategy (cont.)

- Technical tests for the migration were conducted using the SAP Database Migration Option (DMO) tool: (cont.)
 - Checkpoints to review progress prior to Go-Live/Cutover
 - Verify successful production split
 - Complete preparation activities prior to starting the DMO (Migrate, Upgrade, and Convert, aka MUC)
 - Verify HANA is ready to receive data from Oracle across the production network
 - Verify the technical migration is complete (run system health check, start post-processing)
 - Verify readiness to start daily parallel operations
Key Consideration — Testing Strategy (cont.)

- Technical tests for the migration were conducted using the SAP Database Migration Option (DMO) tool: (cont.)
 - User Testing
 - UAT 1: Basic BW Functionality
 - Execute and validate business critical BW queries and workbooks, and test BW on HANA interfaces with other downstream applications
 - UAT 2: Create and Compare test cases in Phase 1 and:
 - Compare results from both systems (BW Oracle/HANA) to identify any anomalies and/or deltas
 - Performance Test
 - Ensure the system performs as expected and meets the standards/SLAs with our business partners
 - Integration Tests
 - Thorough integrated regression testing of business processes in order to identify any issues and resolve prior to the release operations
Change Management Considerations

- **Challenge**: Migration from Oracle to HANA requires two parallel production systems to be kept in sync
 - Proposal to implement an extended freeze period to minimize system changes during the time with parallel production systems
 - Impact to planned projects for FY15 Q2/Q3 deployment schedule
 - The parallel production systems during DRY and FINAL migration require an extended freeze period
 - Projects and Change Requests targeted for deployment after database split (Oracle to HANA) should be developed in BW on HANA (BDA development system)
Upgrade and Migrate Test Considerations

• **Functional Test**
 - Key elements of test strategy include:
 - **Scope, Approach, Objectives, Cycles, Preparation, Execution**
 - **Test Objectives**: Fulfill the main test objectives
 - Guarantee operational stability
 - Verify data integrity
 - Guarantee no performance degradation
 - Ensure continuity of current BW development projects and development landscape – no impact!
Test Approach

• Test Teams: Divide test scope among test sub-teams based on the volume of test elements within each HANA test stream
 - Four (4) test sub-teams: LO, SD/IP/CRM, MTS, FI/MD

• Test cycles and scripts: Validate test elements via test cycle scripts
 - Data integrity, Performance, Regression, Special Cases (7.4 Upgrade, Delta catch-up, HANA Migration, Unicode Conversion), UAT

• Test Results Validation
 - Solution Manager used for capturing test results within the relevant results templates
 - Final results to be combined into a summary report and dashboard for executive readout
BI Rationalization: HANA Landscape Migration

BW Landscape

HANA Project Landscape

Cycle 4

BWD

Cycle 5

BWQ

Cycle 3

BWC

Cycle 6

BWH

Cycle 7

BWP

迁移周期

Development

Quality Assurance

Consolidation

Performance

Production

Oracle Project Landscape (there was actually a 3rd landscape for support)

BDA

BQA

BCA

BHH

BPH

Pre-test, non-production Performance

Copy

BW HANA Landscape
BW on HANA: Simplistic Landscape View

Non –Production Landscape

Production Landscape
Landscape and Cutover Approach

BW on AIX/AIX-Oracle
- Jan 2014: BWD to BWC, BWH, BWP
- Feb 2014: Copy w/PCA BWD to BDA
- Mar 2014: Copy w/PCA BWQ to BDA
- Apr 2014: Copy w/PCA BWH to BDA
- May 2014: Copy w/PCA BWP to BDA
- Jun 2014: Copy w/PCA BDB to BDA
- Jul 2014: Copy w/PCA BWC to BDA
- Aug 2014: Copy w/PCA BWQ to BDA
- Sep 2014: Copy w/PCA BWH to BDA
- Oct 2014: Copy w/PCA BWP to BDA

Interim BW on Linux/AIX-Oracle
- DMO1: BDA
- DMO2: BDA
- DMO3: BDA
- DMO4: BDA
- DMO5: BDA
- DMO6: BDA
- DMO7: BDA

BW On Linux/Linux-HANA
- BDA
- BHH
- BHA
- BQA
- BHP

Soft Freeze
- Soft Freeze
- Dual Maintenance
- Prepare BWD and BWH for DMO
- Copy BWD→BDA and BWH→BHH with PCA
- Start BDA and BHH migration using DMO
- Dual maintenance starts

Hard Freeze
- Start BHH final migration
- Complete BWP final migration
- Catch up delta
- Switch to BHP as production

Dry Run
- DRY run for BWP
- Optimize DMO execution
- Complete DRY run migration
- Delta catch up test
- Prep BWP for final migration

Shutdown
- Complete BWP final migration
- Retrofit

Prepare BWD and BWH for DMO
- Copy BWD to BDA and execute PCA
- BDA on Linux ASCS,PAS,AAS
- Execute DMO test 1

Start BWQ for migration
- Copy BWQ to BQA with PCA
- Execute BQA migration using DMO
- Go-live of Vistex BWD becomes prod support

Optimize BHH Throughput
- Optimize BHH Throughput

Complete BWP final migration
- Complete BWP final migration
- Retrofit

Go-live of Vistex BWD becomes prod support
- Go-live of Vistex BWD becomes prod support

Build BCA as copy of BQA
- Build BCA as copy of BQA

Execute DMO test 2
- Execute DMO test 2

Execute BQA migration using DMO
- Execute BQA migration using DMO

Go-live of Vistex BWD becomes prod support
- Go-live of Vistex BWD becomes prod support

Start BWP final migration
- Start BWP final migration

Complete BWP final migration
- Complete BWP final migration

Catch up delta
- Complete BWP final migration

Switch to BHP as production
- Complete BWP final migration

.delta catch up test
- Complete BWP final migration

Prep BWQ for migration
- Prep BWQ for migration

Optimize BHH Throughput
- Optimize BHH Throughput

Complete BWP final migration
- Complete BWP final migration

Switch to BHP as production
- Complete BWP final migration

Go-live of Vistex BWD becomes prod support
- Go-live of Vistex BWD becomes prod support
What We’ll Cover

- Challenges and requirements
- SAP at McKesson
- Considerations for moving to SAP BW on HANA
 - McKesson solution overview
- Wrap-up
BI Rationalization Approach

- **Key elements of the solution**
 - Moving Current SAP BW environment from running on Oracle/SAP BIA in-memory hybrid database solution to a full-featured SAP HANA in-memory database
 - Redirecting SAP BusinessObjects reports, and in some cases, refining the same to make better use of SAP HANA and/or new SAP BusinessObjects capabilities
 - Introducing new methods of data acquisition and transformation, moving from IBM Data Stage to SAP Data Services (Batch-oriented – Data Services) products
 - Developing new HANA models replacing existent IW and R&A content
Test Approach migrating to BW on HANA

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Test Objective</th>
<th>Test Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>DMO Test</td>
<td>Technical Tests: Data Integrity Scripts, Regression Scripts, Special Cases, Performance Scripts</td>
</tr>
<tr>
<td></td>
<td>DMO Test 2</td>
<td>Compatibility Checks: Data Integrity Scripts, Regression Scripts, Special Cases, Performance Scripts</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>DMO Test with PCA & Test Scripts dry run</td>
<td>Special Cases: 7.4 new/obsolete functionality, Unicode conversion, HANA IMO, Delta catch-up</td>
</tr>
<tr>
<td>Cycle 3</td>
<td>DMO Test</td>
<td>Performance Scripts</td>
</tr>
<tr>
<td>Cycle 4</td>
<td>DMO Test</td>
<td>Performance Scripts</td>
</tr>
<tr>
<td>Cycle 5</td>
<td>QA Migration</td>
<td>Performance Scripts</td>
</tr>
<tr>
<td>Cycle 6</td>
<td>PRD Dry Migration</td>
<td>Performance Scripts</td>
</tr>
<tr>
<td>Cycle 7</td>
<td>PRD Migration</td>
<td>Performance Scripts</td>
</tr>
</tbody>
</table>

- **Cycle 1:** DMO Test 1
 - BWD -> BDA
- **Cycle 2:** DMO Test 2
 - BWD -> BDA
- **Cycle 3:** DMO Test with PCA & Test Scripts dry run
 - Operational Stability, Data Integrity, BW Dev Landscape Sync
- **Cycle 4:** QA Migration
 - BWQ -> BQA
- **Cycle 5:** PRD Dry Migration
 - BWP -> BPH
- **Cycle 6:** PRD Migration
 - BWP -> BPH
- **Cycle 7:** PRD Cutover
 - User Cutover

Test Activities:
- Technical Tests
- Compatibility Checks
- Special Cases
- Performance Scripts

Cycle 3:
- PRD Dry Run Migration
 - BWH -> BHH
 - Operational Stability, Data Integrity, BW Dev Landscape Sync
 - Data Integrity Scripts
 - Regression Scripts
 - Special Cases: 7.4 new/obsolete functionality, Unicode conversion, HANA IMO, Delta catch-up
 - Performance Scripts

Performance:
- Oracle vs. HANA
 (leveraging delta volume testing)

Cycle 3 Cutover:
- Go/No Go

Cycle 3 DMO Go/No Go:
- Go
The Migration to the HANA Platform Has Been an Iterative Approach (It’s Just an Upgrade, Right?!)

- Lift (copy) the current BW Production (BWP) Oracle platform and shift to SAP BW on HANA (BHP)
 - Test Cycles – The goal was to complete the implementation in 6 cycles but 7 cycles were planned
- Cycle 1 – We were the first ship for the DMO tool (literally, the engineer flew from Germany with the tool on a USB). So the first test was to confirm that DMO would work. This was our first Go/No-Go checkpoint.
 - Dry run of DMO migration without PCA
 - Used to test and confirm feasibility of using DMO to upgrade to 7.4 and migrate to HANA
 - Also used to test potential compatibility issues of current BW environment with 7.4 functionality
Cycle 6: System Readiness

- Lessons Learned: System Readiness
 - System Readiness was embedded in Cycle 6. Program (Operational) readiness had been the focal point during Cycle 6. We encountered system issues with the new technologies (HW and SW).
 - Prior to the failure we had made the following achievements:
 - Technical and Functional Verification of HANA System
 - Completion of Delta Catch-Up – 26 million sales orders processed in 4 hours
 - Preparing for next major milestone
 - Parallel execution of Maestro batch job run
 - Validation of Parallel systems in preparation for UAT
 - System Readiness Tests (HA/DR, Backup, Recovery)
Cycle 6: System Readiness (cont.)

• Lessons Learned: System Readiness (cont.)
 - System Readiness completion became a prerequisite to start Cycle 7. Twice daily check-in meetings were established and continued through Cycle 7 (Go-Live).
 - As a result of the system challenges we updated the overall program readiness and split into two distinct categories
 ➤ System Readiness
 - System Monitoring and Alerting
 - System mandatory components are complete (Backups and Restore, SLAs, Change Management, and Security)
 ➤ Resource Readiness
 - Tiered support includes project team resources
 - Triage Team during Early Life Support
Cycle 7 Iterative (Cyclical) Implementation Approach for Test

- **Cycle 7**
 - 7.4 and HANA
 - System checkout and validation by limited set of users
 - Focused on data integrity and cutover
 - Focused on Program (Operational) Readiness
 - User Acceptance Testing
 - Dual Operations Standard Operating Procedures

Timeline

- **11/5**
 - SC Readiness Assessment

- **11/7**
 - Operational Readiness Checkpoint

- **11/11**
 - SV&T Certification

- **11/17**
 - BHP Testing Results Approval

- **11/19**
 - IT Leadership Review

- **11/21**
 - Production Readiness Checkpoint

- **11/24**
 - BWP / BHP User Cutover
 - End User Cutover Communications

- **11/26**
 - 11/24 – 11/26 Parallel Production Environments

- **12/22**
 - ELS

- **02/01 – 03/15**
 - Outbound Integrations rollout
 - 120 outbound integrations rolled out post DR exercise

- **12/21**
 - Post-ELS
BHP Landscape (Primary) IBM X6 (11 x 2TB)

Bhpci.Instance #: 90
- Fault Tolerance
- 4 GB RAM
- 1 CPU Core
- Virtual Infra
- SUSE Linux 11.2

Bhpapp01.Instance #: 90
- V-Motion Support
- 16 GB RAM
- 4 CPU Core
- Virtual Infra
- SUSE Linux 11.2

bhpapp02 to bhpapp05. Instance #: 90
- V-Motion Support
- 16 GB RAM
- 4 CPU Core
- Virtual Infra
- SUSE Linux 11.2

BHP HANA DB Appliance
- Physical (Scale Out)
- 2TB RAM per node
- 240 CPU per Node
- SUSE Linux 11.3
- 175 TB Persistency Store

Host: esshanap10. (Primary Master)
- esshanap11. (Secondary Master)
- Esshanap12. (Worker)
- Esshanap13. (Worker)
- Esshanap14. (Worker)
- Esshanap15. (Worker)
- Esshanap16. (Worker)
- Esshanap17. Worker
- Esshanap18. (Worker)
- Esshanap19. (Standby)
- Esshanap20. (Standby)

Instance #: 80

BHP ASCS
- 16 GB RAM
- 4 CPU Core
- Virtual Infra
- SUSE Linux 11.2

BHP PAS
- V-Motion Support
- 16 GB RAM
- 4 CPU Core
- Virtual Infra
- SUSE Linux 11.2

BHP AAS
- V-Motion Support
- 16 GB RAM
- 4 CPU Core
- Virtual Infra
- SUSE Linux 11.2

Host: esshanap10. (Primary Master)
- esshanap11. (Secondary Master)
- Esshanap12. (Worker)
- Esshanap13. (Worker)
- Esshanap14. (Worker)
- Esshanap15. (Worker)
- Esshanap16. (Worker)
- Esshanap17. Worker
- Esshanap18. (Worker)
- Esshanap19. (Standby)
- Esshanap20. (Standby)

Instance #: 80

BHP HANA DB Appliance
- Physical (Scale Out)
- 2TB RAM per node
- 240 CPU per Node
- SUSE Linux 11.3
- 175 TB Persistency Store

Host: esshanap10. (Primary Master)
- esshanap11. (Secondary Master)
- Esshanap12. (Worker)
- Esshanap13. (Worker)
- Esshanap14. (Worker)
- Esshanap15. (Worker)
- Esshanap16. (Worker)
- Esshanap17. Worker
- Esshanap18. (Worker)
- Esshanap19. (Standby)
- Esshanap20. (Standby)

Instance #: 80

BHP HANA DB Appliance
- Physical (Scale Out)
- 2TB RAM per node
- 240 CPU per Node
- SUSE Linux 11.3
- 175 TB Persistency Store

Host: esshanap10. (Primary Master)
- esshanap11. (Secondary Master)
- Esshanap12. (Worker)
- Esshanap13. (Worker)
- Esshanap14. (Worker)
- Esshanap15. (Worker)
- Esshanap16. (Worker)
- Esshanap17. Worker
- Esshanap18. (Worker)
- Esshanap19. (Standby)
- Esshanap20. (Standby)

Instance #: 80

BHP HANA DB Appliance
- Physical (Scale Out)
- 2TB RAM per node
- 240 CPU per Node
- SUSE Linux 11.3
- 175 TB Persistency Store
BW on HANA Results

• Executed project in 11 ½ months
 • Delivered in-memory analytics capability – 21x improvement in response time for users
 ▶ Improved user satisfaction – Initial feedback and adoption metrics have been very positive

Note:
The enhancement to system performance is very noticeable. One report I run very often would take up to 30 minutes in the old BW environment, now the query produces results in less than one minute.

• Operational efficiencies
 ▶ Reduction of nightly batch schedule – 30%
 ▶ Data load into BW – 30-40% reduction
 ▶ Improved operational capacity by reducing IT processing time that allows for improved maintenance window capacity and de-risks outage impacts
Performance Test Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Pre-Production (BHH vs. BWH)</th>
<th>Production (BHP vs. BWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Queries Tested</td>
<td>65</td>
<td>135</td>
</tr>
<tr>
<td>Average improvement of Query execution</td>
<td>13.6 times faster</td>
<td>21 times faster</td>
</tr>
<tr>
<td>Number of Process Chains Analyzed</td>
<td>100 longest running PCs</td>
<td>1764 Maestro PCs</td>
</tr>
<tr>
<td>Average Data Throughput</td>
<td>3 times faster average</td>
<td>2 times faster on average</td>
</tr>
<tr>
<td>Average Data Load Performance Improvement</td>
<td>50% improvement</td>
<td>35% improvement</td>
</tr>
</tbody>
</table>
BW on HANA Results — BW on HANA Growth

- **Lessons Learned: Data Volume Management**
 - BW/Oracle growth exceeded our initial projections
 - After Migration to HANA, BHP DB size is approximately 8TB
 - Implementing data management strategy to eliminate performance degradation, need for additional hardware, and accommodate future programs

- **Post-Go-Live activities: Data technology and data rationalization**
 - Quick Win – DSO and InfoCube optimization
BW on HANA Go/No-Go Success Criteria

- Go/No-Go criteria was met, with a 3-month dual operations period
 - Program Recommendation:
 - Go/No-Go Criteria/Assessments/Sign-Offs
 - Subset of users for CO-PA, GL and AR will be required to validate September and October close prior to Go-Live
 - September close will be completed prior to UAT 2 and users can validate the reports
 - Success Measurement: If month-end close validation is successful for September and October during UAT
 - Execute November month end close on BW on HANA in December

- Key Milestones
 - Vendor Certification – 11/05 (Steering Committee Meeting)
 - Decision to extend dual operations for 5 months
Key Elements of the Company’s Solution

• **Lessons Learned: Dual Operations**

 - **Strategy and Approach**
 - Requires processes to remediate BW-related system issues and preserve data currency
 - *Need to understand user maintained content and determine procedures to export from Oracle to HANA*
 - **System Procedures**
 - **Full Roll Back**
 - If extended outage due to hardware/software instability (timing of the outage may be a key factor in deciding when it is triggered)
 - **Partial Roll Back**
 - Based on end user feedback that data is incorrect in BW on HANA, but correct in BW on Oracle
What We’ll Cover

- Challenges and requirements
- SAP at McKesson
- Considerations for moving to SAP BW on HANA
- McKesson solution overview

- Wrap-up
Where to Find More Information

- **www.SAP-press.com**
 - Visit for latest books on BW, HANA, Implementing HANA, etc.

- **www.experiencesaphana.com**
 - SAP HANA Homepage
 - Content focused on SAP HANA and customer experiences

- **www.SAP.com/hanaspotlight**
 - SAP HANA Customer Spotlight Virtual Briefing Center
7 Key Points to Take Home

• This is a journey, not a start and end. (It may seem cliché but it’s not.)
• Engage and educate the most innocuous support teams early
• It may be over ambitious to run 3 major projects under 1 program
• Continually remind leadership team that new technology will be challenging and that there may not be immediate resolutions
• Keep your vendor partners accountable and challenge them on even the most minute items (the devil is in the details)
• Clarify the difference between decommissioning vs. disposal of an asset (costs may continue for a decommissioned asset if it’s not repurposed and/or disposed of)
• If possible, use both solutions in parallel to allow for a smooth transition (and leverage as an insurance policy post-go-live)
FEBRUARY 16-19 | LAS VEGAS

HANA2016

The definitive event for organizations evaluating, implementing, and optimizing SAP HANA® for big data and real-time analytics

HANA 2016 is co-located with Basis & SAP Administration 2016 and BI 2016. Registration at one conference admits you to all three events at no additional cost.

To learn more, visit: www.hana2016.com

#HANA2016
Disclaimer

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of their respective companies. Wellesley Information Services is neither owned nor controlled by SAP SE.